
Modified LTQueue without Load-Link/Store-Conditional

Modified LTQueue without Load-Link/Store-Conditional

1. Original LTQueue

The original algorithm is given in [1] by Prasad
Jayanti and Srdjan Petrovic in 2005. LTQueue is a
wait-free MPSC algorithm, with logarithmic-time
complexity for both enqueue and dequeue opera-
tions. The algorithm achieves good scalability by
distributing the “global” queue over 𝑛 queues that
are local to each enqueuer. This helps avoid con-
tention on the global queue among the enqueuers
and allows multiple enqueuers to succeed at
the same time. Furthermore, each enqueue and
dequeue is efficient: they are wait-free and guar-
anteed to complete in 𝜃(log 𝑛) steps where 𝑛 is the
number of enqueuers. This is possible due to the
novel tree structure proposed by the authors.

1.1. Local queue algorithm

Each local queue in LTQueue is an SPSC that al-
lows an enqueuer and a dequeuer to concurrently
access. Every enqueuer has one such local SPSC.
Only the owner enqueuer and the dequeuer can
access this local SPSC.

This section presents the SPSC data structure
proposed in [1]. Beside the usual enqueue and
dequeue procedures, this SPSC also supports the
readFront procedure, which allows the enqueuer
and dequeuer to retrieve the first item in the SPSC.
Notice that enqueuer and dequeuer each has its
own readFront method.

Types
data_t = The type of data stored
node_t = The type of the linked-list’s nodes

record
val: data_t
next: pointer to node_t

end

Shared variables
First: pointer to node_t
Last: pointer to node_t
Announce: pointer to node_t
FreeLater: pointer to node_t
Help: data_t

Initialization
First = Last = new Node()

FreeLater = new Node()

The SPSC always has a dummy node at the end.

The enqueuer’s procedures are given as follows.

Procedure 1: spsc_enqueue(v: data_t)

1 newNode = new Node()
2 tmp = Last
3 tmp.val = v
4 tmp.next = newNode
5 Last = newNode

Procedure 2: spsc_readFronte() returns
data_t

6 tmp = First

7 if (tmp == Last) return ⊥
8 Announce = tmp
9 if (tmp != First)

10 retval = Help
11 else retval = tmp.val
12 return retval

The dequeuer’s procedures are given as follows.

1

Modified LTQueue without Load-Link/Store-Conditional

Procedure 3: spsc_dequeue() returns data_t

13 tmp = First

14 if (tmp == Last) return ⊥
15 retval = tmp.val
16 Help = retval
17 First = tmp.next
18 if (tmp == Announce)
19 tmp' = FreeLater
20 FreeLater = tmp
21 free(tmp')
22 else free(tmp)
23 return retval

Procedure 4: spsc_readFrontd() returns
data_t

24 tmp = First
25 if (tmp == Last)
26 return ⊥
27 return tmp.val

The treatment of linearizability, wait-freedom and
memory safety is given in the original paper [1].
However, we can establish some intuition by look-
ing at the procedures.

For wait-freedom, each procedure doesn’t loop
and doesn’t wait for any other procedures to be
able to complete on its own, therefore, they are all
wait-free.

For memory safety, note that spsc_enqueue never
accesses freed memory because the node pointed
to by Last is never freed inside spsc_dequeue.
spsc_readFronte tries to read First (line 6) and
announces it not to be deleted to the dequeuer
(line 8), it then checks if the pointer it read is still
First (line 9), if it is, then it’s safe to dereference
the pointer (line 11) because the dequeuer would
take note not to free it (line 18), otherwise, it
returns Help (line 10), which is safely placed by the
dequeuer (line 16). spsc_dequeue safely reclaims
memory and does not leak memory (line 18-22).

spsc_readFrontd is safe because there’s only one
dequeuer running at a time.

For linearizability, the linearization point of
spsc_enqueue is after line 5, spsc_readFronte is
right after line 8, spsc_dequeue is right after line
17 and spsc_readFrontd is right after line 25. Ad-
ditionally, all the operations take constant time no
matter the size of the queue.

1.2. LTQueue algorithm

LTQueue’s idea is to maintain a tree structure as
in Image 1. Each enqueuer is represented by the
local SPSC node at the bottom of the tree. Every
SPSC node in the local queue contains data and a
timestamp indicating when it’s enqueued into the
SPSC. For consistency in node structure, we con-
sider the leaf nodes of the tree to be the ones that
are attached to the local SPSC of each enqueuer.
Every internal node contains the minimum time-
stamp among its children’s timestamps.

Types
data_t = The type of the data to be stored in
LTQueue
spsc_t = The type of the local SPSC
tree_t = The type of the tree constructed by
LTQueue
node_t = The node type of tree_t, containing
a 64-bit timestamp value, packing a monotonic
counter and the enqueuer’s rank.

Shared variables
counter: integer (counter supports LL and SC
operations)
Q: array [1..n] of spsc_t
T: tree_t

Initialization
counter = 0

2

Modified LTQueue without Load-Link/Store-Conditional

Image 1: LTQueue’s structure

Procedure 5: enqueue(rank: int, value:
data_t)

1 count = LL(counter)
2 SC(counter, count + 1)
3 timestamp = (count, rank)
4 spsc_enqueue(Q[rank], (value, timestamp))
5 propagate(Q[rank])

Procedure 6: dequeue() returns data_t

6 [count, rank] = read(root(T))

7 if (rank == ⊥) return ⊥
8 ret = spsc_dequeue(Q[rank])
9 propagate(Q[rank])

10 return ret.val

The followings are the timestamp propagation
procedures.

Procedure 7: propagate(spsc: spsc_t)

11 if ¬refreshLeaf(spsc)
12 refreshLeaf(spsc)
13 currentNode = leafNode(spsc)
14 repeat
15 currentNode = parent(currentNode)

16 if ¬refresh(currentNode)
17 refresh(currentNode)
18 until currentNode == root(T)

Procedure 8: refresh(currentNode: pointer to
node_t)

19 LL(currentNode)
20 for childNode in children(currentNode)

21
let minT be the minimum timestamp for
every childNode

22 SC(currentNode, minT)

3

Modified LTQueue without Load-Link/Store-Conditional

Procedure 9: refreshLeaf(spsc: spsc_t)

23 leafNode = leafNode(spsc)
24 LL(leafNode)
25 SC(leafNode, spsc_readFront(spsc))

Note that compare to the original paper [1], we
have make some trivial modification on line 11-12
to handle the leaf node case, which was left
unspecified in the original algorithm. In many
ways, this modification is in the same light with
the mechanism the algorithm is already using,
so intuitively, it should not affect the algorithm’s
correctness or wait-freedom. Note that on line
25 of refreshLeaf, we omit which version of
spsc_readFront it’s calling, simply assume that
the dequeuer and the enqueuer should call their
corresponding version of spsc_readFront.

Similarly, the proofs of LTQueue’s linearizability,
wait-freedom, memory-safety and logarithmic-
time complexity of enqueue and dequeue opera-
tions are given in [1]. One notable technique that
allows LTQueue to be both correct and wait-free
is the double-refresh trick during the propagation
process on line 16-17.

The idea behind the propagate procedure is
simple: Each time an SPSC queue is modified
(inserted/deleted), the timestamp of a leaf has

changed so the timestamps of all nodes on the path
from that leaf to the root can potentially change.
Therefore, we have to propagate the change to-
wards the root, starting from the leaf (line 11-18).

The refresh procedure is by itself simple: we
access all child nodes to determine the minimum
timestamp in each child’s subtree and try to set
the current node’s timestamp with the minimum
timestamp using a pair of LL/SC. However, LL/
SC can not always succeed so the current node’s
timestamp may not be updated by refresh at all.
The key to fix this is to retry refresh on line 17 in
case of the first refresh’s failure. Later, when we
prove the correctness of the modified LTQueue, we
provide a formal proof of why this works. Here, for
intuition, we visualize in Image 2 the case where
both refresh fails but correctness is still ensures.

2. Adaption of LTQueue without
load-link/store-conditional

The SPSC data structure in the original LTQueue
is kept in tact so one may refer to Procedure 1,
Procedure 2, Procedure 3, Procedure 4 for the sup-
ported SPSC procedures.

The followings are the rewritten LTQueue’s algo-
rithm without LL/SC.

Image 2: Even though two refreshs fails, the currentNode’s timestamp is still updated correctly

4

Modified LTQueue without Load-Link/Store-Conditional

The structure of LTQueue is modified as in
Image 3. At the bottom enqueuer nodes (rep-
resented by the type enqueuer_t), besides the
local SPSC, the minimum-timestamp among the
elements in the SPSC is also stored. The internal
nodes no longer store a timestamp but a rank of an
enqueuer. This rank corresponds to the enqueuer
with the minimum timestamp among the node’s
children’s ranks. Note that if a local SPSC is empty,
the minimum-timestamp of the corresponding en-
queuer node is set to MAX and the corresponding
leaf node’s rank is set to a DUMMY rank.

Types
data_t = The type of the data to be stored
in LTQueue
spsc_t = The type of the local SPSC
rank_t = The rank of an enqueuer

struct
value: uint32_t
version: uint32_t

end
timestamp_t =

struct
value: uint32_t

version: uint32_t
end

enqueuer_t =
struct

spsc: spsc_t
min-timestamp: timestamp_t

end
node_t = The node type of the tree con-
structed by LTQueue

struct
rank: rank_t

end

Shared variables
counter: uint64_t
root: pointer to node_t
enqueuers: array [1..n] of enqueuer_t

Initialization
counter = 0

construct the tree structure and set root to the
root node

Image 3: Modified LTQueue’s structure

5

Modified LTQueue without Load-Link/Store-Conditional

initialize every node in the tree to contain DUMMY
rank and version 0
initialize every enqueuer’s timestamp to MAX
and version 0

Procedure 10: enqueue(rank: int, value:
data_t)

1 count = FAA(counter)
2 timestamp = (count, rank)

3 spsc_enqueue(enqueuers[rank].spsc,
(value, timestamp))

4 propagate(rank)

Procedure 11: dequeue() returns data_t

5 [rank, version] = root->rank

6 if (rank == DUMMY) return ⊥
7 ret = spsc_dequeue(enqueuers[rank].spsc)
8 propagate(rank)
9 return ret.val

We omit the description of procedures parent,
leafNode, children, leaving how the tree is con-
structed and children-parent relationship is deter-
mined to the implementor. The tree structure used
by LTQueue is read-only so a wait-free implemen-
tation of these procedures is trivial.

Procedure 12: propagate(rank: uint32_t)

10 if ¬refreshTimestamp(rank)
11 refreshTimestamp(rank)

12 if ¬refreshLeaf(rank)
13 refreshLeaf(rank)
14 currentNode = leafNode(rank)
15 repeat
16 currentNode = parent(currentNode)

17 if ¬refresh(currentNode)
18 refresh(currentNode)
19 until currentNode == root

Procedure 13: refresh(currentNode:
pointer to node_t)

20 [old-rank, old-version] = currentNode-
>rank

21 min-rank = DUMMY
22 min-timestamp = MAX
23 for childNode in children(currentNode)
24 [child-rank, ...] = childNode->rank
25 if (child-rank == DUMMY) continue

26 child-timestamp = enqueuers[child-
rank].min-timestamp

27 if (child-timestamp < min-timestamp)
28 min-timestamp = child-timestamp
29 min-rank = child-rank

30
CAS(¤tNode->rank, [old-rank,
old-version], [min-rank, old-version
+ 1])

Procedure 14: refreshTimestamp(rank:
uint32_t)

31 [old-timestamp, old-version] =
enqueuers[rank].timestamp

32 front
= spsc_readFront(enqueuers[rank].spsc)

33 if (front == ⊥)

34
CAS(&enqueuers[rank].timestamp, [old-
timestamp, old-version], [MAX, old-
version + 1])

35 else

36
CAS(&enqueuers[rank].timestamp, [old-
timestamp, old-version],
[front.timestamp, old-version + 1])

Procedure 15: refreshLeaf(rank: uint32_t)

37 leafNode = leafNode(spsc)
38 [old-rank, old-version] = leafNode->rank

39 [timestamp, ...]
= enqueuers[rank].timestamp

40
CAS(&leafNode->rank, [old-rank, old-
version], [timestamp == MAX ? DUMMY :
rank, old-version + 1])

6

Modified LTQueue without Load-Link/Store-Conditional

Notice that we omit which version of
spsc_readFront we’re calling on line 32, simply
assuming that the producer and each enqueuer are
calling their respective version.

3. Proof of correctness

This section proves that the algorithm given in the
last section is linearizable, memory-safe and wait-
free.

3.1. Linearizability

Within the next two sections, we formalize what
it means for an MPSC to be linearizable.

Definition of linearizability

The following discussion of linearizability is based
on [2] by Herlihy and Shavit.

For a concurrent object S, we can call some meth-
ods on S concurrently. A method call on the object
S is said to have an invocation event when it
starts and a response event when it ends.

Definition 3.1.1 An invocation event is a triple
(𝑆, 𝑡, 𝑎𝑟𝑔𝑠), where 𝑆 is the object the method is
invoked on, 𝑡 is the timestamp of when the event
happens and 𝑎𝑟𝑔𝑠 is the arguments passed to the
method call.

Definition 3.1.2 A response event is a triple
(𝑆, 𝑡, 𝑟𝑒𝑠), where 𝑆 is the object the method is
invoked on, 𝑡 is the timestamp of when the event
happens and 𝑟𝑒𝑠 is the results of the method call.

Definition 3.1.3 A method call is a tuple of (𝑖, 𝑟)
where 𝑖 is an invocation event and 𝑟 is a response
event or the special value ⊥ indicating that its re-
sponse event hasn’t happened yet. A well-formed
method call should have a reponse event with a
larger timestamp than its invocation event or the
response event hasn’t happened yet.

Definition 3.1.4 A method call is pending if its
invocation event is ⊥.

Definition 3.1.5 A history is a set of well-formed
method calls.

Definition 3.1.6 An extension of history 𝐻 is a
history 𝐻′ such that any pending method call is
given a response event.

We can define a strict partial order on the set of
well-formed method calls:

Definition 3.1.7 → is a relation on the set of well-
formed method calls. With two method calls 𝑋 and
𝑌 , we have 𝑋 → 𝑌 ⇔ 𝑋’s response event is not
⊥ and its response timestamp is not greater than
𝑌 ’s invocation timestamp.

Definition 3.1.8 Given a history H, →𝐻 is a
relation on 𝐻 such that for two method calls 𝑋
and 𝑌 in 𝐻 , 𝑋 →𝐻𝑌 ⇔ 𝑋 → 𝑌 .

Definition 3.1.9 A sequential history 𝐻 is a
history such that →𝐻 is a total order on 𝐻 .

Now that we have formalized the way to describe
the order of events via histories, we can now for-
malize the mechanism to determine if a history is
valid. The easier case is for a sequential history:

Definition 3.1.10 For a concurrent object 𝑆, a
sequential specification of 𝑆 is a function that
either returns true (valid) or false (invalid) for a
sequential history 𝐻 .

The harder case is handled via the notion of lin-
earizable:

Definition 3.1.11 A history 𝐻 on a concurrent
object 𝑆 is linearizable if it has an extension 𝐻′
and there exists a sequential history 𝐻𝑆 such that:
1. The sequential specification of 𝑆 accepts 𝐻𝑆 .
2. There exists a one-to-one mapping 𝑀 of

a method call (𝑖, 𝑟) ∈ 𝐻′ to a method call
(𝑖𝑆, 𝑟𝑆) ∈ 𝐻𝑆 with the properties that:
• 𝑖 must be the same as 𝑖𝑆 except for the time-

stamp.
• 𝑟 must be the same 𝑟𝑆 except for the time-

stamp or 𝑟.
3. For any two method calls 𝑋 and 𝑌 in 𝐻′,
𝑋 →𝐻′𝑌 ⇒ 𝑀(𝑋) →𝐻𝑆𝑀(𝑌).

We consider a history to be valid if it’s linearizable.

7

Modified LTQueue without Load-Link/Store-Conditional

Definition of linearizable MPSC

An MPSC supports 2 methods:
• enqueue which accepts a value and returns noth-

ing
• dequeue which doesn’t accept anything and re-

turns a value

An MPSC has the same sequential specification
as a FIFO:
• dequeue returns values in the same order as they

was enqueued.
• An enqueue can only by dequeued once.
• An item can only be dequeued after it’s
enqueued.

• If the queue is empty, dequeue returns nothing.

An MPSC places a special constraint on the set of
histories it can produce: Any history 𝐻 must not
have overlapping dequeue method calls.

Definition 3.1.12 An MPSC is linearizable if
and only if any history produced from the MPSC
that does not have overlapping dequeue method
calls is linearizable according to the FIFO sequential
specification.

Proof of linearizability

Definition 3.1.13 An enqueue operation 𝑒 is said
to match a dequeue operation 𝑑 if 𝑑 returns a
timestamp that 𝑒 enqueues. Similarly, 𝑑 is said to
match 𝑒. In this case, both 𝑒 and 𝑑 are said to be
matched.

Definition 3.1.14 An enqueue operation 𝑒 is
said to be unmatched if no dequeue operation
matches it.

Definition 3.1.15 A dequeue operation 𝑑 is
said to be unmatched if no enqueue operation
matches it, in other word, 𝑑 returns ⊥.

Theorem 3.1.16 Only the dequeuer and one en-
queuer can operate on an enqueuer node.

Proof This is trivial. □

We immediately obtain the following result.

Corollary 3.1.17 Only one dequeue operation
and one enqueue operation can operate concur-
rently on an enqueuer node.

Proof This is trivial. □

Theorem 3.1.18 The SPSC at an enqueuer node
contains items with increasing timestamps.

Proof Each enqueue would FAA the shared
counter (line 1 in Procedure 10) and enqueue
into the local SPSC an item with the time-
stamp obtained from the counter. Applying
Corollary 3.1.17, we know that items are enqueued
one at a time into the SPSC. Therefore, later items
are enqueued by later enqueues, which obtain in-
creasing values by FFA-ing the shared counter. The
theorem holds. □

Definition 3.1.19 For a tree node 𝑛, the enqueuer
rank stored in 𝑛 at time 𝑡 is denoted as 𝑟𝑎𝑛𝑘(𝑛, 𝑡).

Definition 3.1.20 For an enqueue or a dequeue
op, the rank of the enqueuer it affects is denoted as
𝑟𝑎𝑛𝑘(op).

Definition 3.1.21 For an enqueuer whose rank is
𝑟, the min-timestamp value stored in its enqueuer
node at time 𝑡 is denoted as 𝑚𝑖𝑛-𝑡𝑠(𝑟, 𝑡). If 𝑟 is
DUMMY, 𝑚𝑖𝑛-𝑡𝑠(𝑟, 𝑡) is MAX.

Definition 3.1.22 For an enqueuer with rank
𝑟, the minimum timestamp among the elements
between First and Last in the local SPSC at time
𝑡 is denoted as 𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟, 𝑡). If 𝑟 is dummy,
𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟, 𝑡) is MAX.

Definition 3.1.23 For an enqueue or a dequeue
op, the set of nodes that it calls refresh or
refreshLeaf on is denoted as 𝑝𝑎𝑡ℎ(op).

Definition 3.1.24 For an enqueue or a dequeue,
timestamp-refresh phase refer to its execution
of line 10-11 in propagate (Procedure 12).

Definition 3.1.25 For an enqueue or a dequeue op,
and a node 𝑛 ∈ 𝑝𝑎𝑡ℎ(op), node-𝑛-refresh phase
refer to its execution of line 12-13 (if 𝑛 is a leaf
node) or line 17-18 (if 𝑛 is a non-leaf node) to
refresh 𝑛’s rank in propagate (Procedure 12).

8

Modified LTQueue without Load-Link/Store-Conditional

Definition 3.1.26 refreshTimestamp is said to
start its CAS-sequence if it finishes line 31 in
Procedure 14. refreshTimestamp is said to end its
CAS-sequence if it finishes line 34 or line 36 in
Procedure 14.

Definition 3.1.27 refresh is said to start its CAS-
sequence if it finishes line 20 in Procedure 13.
refresh is said to end its CAS-sequence if it
finishes line 30 in Procedure 13.

Definition 3.1.28 refreshLeaf is said to start
its CAS-sequence if it finishes line 38 in Proce-
dure 15. refreshLeaf is said to end its CAS-
sequence if it finishes line 40 in Procedure 15.

Theorem 3.1.29 For an enqueue or a dequeue op,
if op modifies an enqueuer node and this enqueuer
node is attached to a leaf node 𝑙, then 𝑝𝑎𝑡ℎ(op) is
the set of nodes lying on the path from 𝑙 to the
root node.

Proof This is trivial considering how propagate
(Procedure 12) works. □

Theorem 3.1.30 For any time 𝑡 and a node 𝑛,
𝑟𝑎𝑛𝑘(𝑛, 𝑡) can only be DUMMY or the rank of one of
the enqueuer nodes in the subtree rooted at 𝑛.

Proof This is trivial considering how refresh
and refreshLeaf works. □

Theorem 3.1.31 If an enqueue or a dequeue op
begins its timestamp-refresh phase at 𝑡0 and
finishes at time 𝑡1, there’s always at least one suc-
cessful refreshTimestamp on 𝑟𝑎𝑛𝑘(op) starting
and ending its CAS-sequence between 𝑡0 and 𝑡1.

Proof If one of the two refreshTimestamps
succeeds, then we have obtain the theorem.

Consider the case where both fail.

The first refreshTimestamp fails because there’s
another refreshTimestamp ending its CAS-se-
quence successfully after 𝑡0 but before the end of
the first refreshTimestamp’s CAS-sequence.

The second refreshTimestamp fails because
there’s another refreshTimestamp ending its
CAS-sequence successfully after 𝑡0 but before

the end of the second refreshTimestamp’s CAS-
sequence. This another refreshTimestamp must
start its CAS-sequence after the end of the
first successful refreshTimestamp, else it over-
laps with the CAS-sequence of the first suc-
cessful refreshTimestamp but successful CAS-
sequences cannot overlap. In other words, this
another refreshTimestamp starts and successfully
ends its CAS-sequence between 𝑡0 and 𝑡1.

We have proved the theorem. □

Theorem 3.1.32 If an enqueue or a dequeue be-
gins its node-𝑛-refresh phase at 𝑡0 and finishes
at 𝑡1, there’s always at least one successful refresh
or refreshLeaf on 𝑛 starting and ending its CAS-
sequence between 𝑡0 and 𝑡1.

Proof This is similar to the above proof. □

Theorem 3.1.33 For any node 𝑛,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛, 𝑡𝑥), 𝑡𝑦) is monotonically de-
creasing for 𝑡𝑥, 𝑡𝑦 ∈ [𝑡0, 𝑡1] if within 𝑡0 and 𝑡1,
any dequeue 𝑑 where 𝑛 ∈ 𝑝𝑎𝑡ℎ(𝑑) has finished its
node-𝑛-refresh phase.

Proof We have the assumption that within 𝑡0 and
𝑡1, all dequeue where 𝑛 ∈ 𝑝𝑎𝑡ℎ(𝑑) has finished its
node-𝑛-refresh phase. Notice that if 𝑛 satisfies
this assumption, any child of 𝑛 also satisfies this
assumption.

We will prove a stronger version of this theorem:
Given a node 𝑛, time 𝑡0 and 𝑡1 such that within
[𝑡0, 𝑡1], any dequeue 𝑑 where 𝑛 ∈ 𝑝𝑎𝑡ℎ(𝑑) has
finished its node-𝑛-refresh phase. Consider the
last dequeue’s node-𝑛-refresh phase before 𝑡0
(there maybe none). Take 𝑡𝑠(𝑛) and 𝑡𝑒(𝑛) to be
the starting and ending time of the CAS-sequence
of the last successful 𝑛-refresh call during this
phase, or if there is none, 𝑡𝑠(𝑛) = 𝑡𝑒(𝑛) = 0.
Then, 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛, 𝑡𝑥), 𝑡𝑦) is monotonically
decreasing for 𝑡𝑥, 𝑡𝑦 ∈ [𝑡𝑒(𝑛), 𝑡1].

Consider any enqueuer node of rank 𝑟 that’s at-
tached to a satisfied leaf node. For any 𝑛′ that is a
descendant of 𝑛, during 𝑡𝑠(𝑛′) and 𝑡1, there’s no
call to spsc_dequeue. Because:

9

Modified LTQueue without Load-Link/Store-Conditional

• If an spsc_dequeue starts between 𝑡0 and 𝑡1, the
dequeue that calls it hasn’t finished its node-𝑛′

-refresh phase.
• If an spsc_dequeue starts between 𝑡𝑠(𝑛′) and 𝑡0,

then a dequeue’s node-𝑛′-refresh phase must
start after 𝑡𝑠(𝑛′) and before 𝑡0, but this violates
our assumption of 𝑡𝑠(𝑛′).

Therefore, there can only be calls to spsc_enqueue
during 𝑡𝑠(𝑛′) and 𝑡1. Thus, 𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟, 𝑡𝑥) can
only decrease from MAX to some timestamp and
remain constant for 𝑡𝑥 ∈ [𝑡𝑠(𝑛′), 𝑡1]. (1)

Similarly, there can be no dequeue that hasn’t fin-
ished its timestamp-refresh phase during 𝑡𝑠(𝑛′)
and 𝑡1. Therefore, 𝑚𝑖𝑛-𝑡𝑠(𝑟, 𝑡𝑥) can only decrease
from MAX to some timestamp and remain constant
for 𝑡𝑥 ∈ [𝑡𝑠(𝑛′), 𝑡1]. (2)

Consider any satisfied leaf node 𝑛0. There can
be no dequeue that hasn’t finished its node-𝑛0
-refresh phase during 𝑡𝑒(𝑛0) and 𝑡1. Therefore,
any successful refreshLeaf during [𝑡𝑒(𝑛0), 𝑡1]
must be called by an enqueue. Because there’s
no spsc-dequeue, this refreshLeaf can only
set 𝑟𝑎𝑛𝑘(𝑛0, 𝑡𝑥) from DUMMY to 𝑟 and remains
𝑟 until 𝑡1, which is the rank of the enqueuer
node its attached to. Therefore, combining with
(1), 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛0, 𝑡𝑥), 𝑡𝑦) is monotonically
decreasing for 𝑡𝑥, 𝑡𝑦 ∈ [𝑡𝑒(𝑛0), 𝑡1]. (3)

Consider any satisfied non-leaf node 𝑛′ that is
a descendant of 𝑛. Suppose during [𝑡𝑒(𝑛′), 𝑡1],
we have a sequence of successful 𝑛′-refresh
calls that start their CAS-sequences at 𝑡𝑠𝑡𝑎𝑟𝑡-0 <
𝑡𝑠𝑡𝑎𝑟𝑡-1 < 𝑡𝑠𝑡𝑎𝑟𝑡-2 < … < 𝑡𝑠𝑡𝑎𝑟𝑡-𝑘 and end them at
𝑡𝑒𝑛𝑑-0 < 𝑡𝑒𝑛𝑑-1 < 𝑡𝑒𝑛𝑑-2 < … < 𝑡𝑒𝑛𝑑-𝑘. By defini-
tion, 𝑡𝑒𝑛𝑑-0 = 𝑡𝑒(𝑛′) and 𝑡𝑠𝑡𝑎𝑟𝑡-0 = 𝑡𝑠(𝑛′). We can
prove that 𝑡𝑒𝑛𝑑-𝑖 < 𝑡𝑠𝑡𝑎𝑟𝑡-(𝑖+1) because successful
CAS-sequences cannot overlap.

Due to how refresh is defined, for any 𝑘 ≥ 𝑖 ≥ 1:

• Suppose 𝑡𝑟𝑎𝑛𝑘-𝑖(𝑐) is the time refresh reads the
rank stored in the child node 𝑐, so 𝑡𝑠𝑡𝑎𝑟𝑡-𝑖 ≤
𝑡𝑟𝑎𝑛𝑘-𝑖(𝑐) ≤ 𝑡𝑒𝑛𝑑-𝑖.

• Suppose 𝑡𝑡𝑠-𝑖(𝑐) is the time refresh reads the
timestamp stored in the enqueuer with the rank
read previously, so 𝑡𝑠𝑡𝑎𝑟𝑡-𝑖 ≤ 𝑡𝑡𝑠-𝑖(𝑐) ≤ 𝑡𝑒𝑛𝑑-𝑖.

• There exists a child 𝑐𝑖 such that
𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-𝑖) = 𝑟𝑎𝑛𝑘(𝑐𝑖, 𝑡𝑟𝑎𝑛𝑘-𝑖(𝑐𝑖)). (4)

• For every child 𝑐 of 𝑛′,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-𝑖), 𝑡𝑡𝑠-𝑖(𝑐𝑖))
≤ 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑐, 𝑡𝑟𝑎𝑛𝑘-𝑖(𝑐)), 𝑡𝑡𝑠-𝑖(𝑐)). (5)

Suppose the stronger theorem already holds for
every child 𝑐 of 𝑛′. (6)

For any 𝑖 ≥ 1, we have
𝑡𝑒(𝑐) ≤ 𝑡𝑠(𝑛′) ≤ 𝑡𝑠𝑡𝑎𝑟𝑡-(𝑖−1) ≤ 𝑡𝑟𝑎𝑛𝑘-(𝑖−1)(𝑐) ≤
𝑡𝑒𝑛𝑑-(𝑖−1) ≤ 𝑡𝑠𝑡𝑎𝑟𝑡-𝑖 ≤ 𝑡𝑟𝑎𝑛𝑘-𝑖(𝑐) ≤ 𝑡1. Combining
with (5), (6), we have for any 𝑘 ≥ 𝑖 ≥ 1,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-𝑖), 𝑡𝑡𝑠-𝑖(𝑐𝑖))
≤ 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑐, 𝑡𝑟𝑎𝑛𝑘-𝑖(𝑐)), 𝑡𝑡𝑠-𝑖(𝑐))
≤ 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑐, 𝑡𝑟𝑎𝑛𝑘-(𝑖−1)(𝑐)), 𝑡𝑡𝑠-𝑖(𝑐)).

Choose 𝑐 = 𝑐𝑖−1 as in (4). We have for any 𝑘 ≥
𝑖 ≥ 1,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-𝑖), 𝑡𝑡𝑠-𝑖(𝑐𝑖))
≤ 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑐𝑖−1, 𝑡𝑟𝑎𝑛𝑘-(𝑖−1)(𝑐𝑖−1)),
𝑡𝑡𝑠-𝑖(𝑐𝑖−1))
= 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-(𝑖−1)), 𝑡𝑡𝑠-𝑖(𝑐𝑖−1).

Because 𝑡𝑡𝑠-𝑖(𝑐𝑖) ≤ 𝑡𝑒𝑛𝑑-𝑖 and 𝑡𝑡𝑠-𝑖(𝑐𝑖−1) ≥
𝑡𝑒𝑛𝑑-(𝑖−1) and (2), we have for any 𝑘 ≥ 𝑖 ≥ 1,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-𝑖), 𝑡𝑒𝑛𝑑-𝑖)
≤ 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-(𝑖−1)), 𝑡𝑒𝑛𝑑-(𝑖−1)). (∗)

𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑥) can only change after each suc-
cessful refresh, therefore, the sequence of its
value is 𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-0), 𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-1), …,
𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-𝑘). (∗ ∗)

Note that if refresh observes that an enqueuer
has a min-timestamp of MAX, it would never try
to CAS 𝑛′’s rank to the rank of that enqueuer
(line 22 and line 27 of Procedure 13). So, if
refresh actually set the rank of 𝑛′ to some
non-DUMMY value, the corresponding enqueuer
must actually has a non-MAX min-timestamp at
some point. Due to (2), this is constant up

10

Modified LTQueue without Load-Link/Store-Conditional

until 𝑡1. Therefore, 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-𝑖), 𝑡))
is constant for any 𝑡 ≥ 𝑡𝑒𝑛𝑑-𝑖 and 𝑘 ≥ 𝑖 ≥ 1.
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-0), 𝑡)) is constant for any
𝑡 ≥ 𝑡𝑒𝑛𝑑-0 if there’s a refresh before 𝑡0. If there’s
no refresh before 𝑡0, it is constant MAX. So,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛′, 𝑡𝑒𝑛𝑑-𝑖), 𝑡)) is constant for any
𝑡 ≥ 𝑡𝑒𝑛𝑑-𝑖 and 𝑘 ≥ 𝑖 ≥ 0. (∗ ∗ ∗)

Combining (∗), (∗ ∗), (∗ ∗ ∗), we obtain the
stronger version of the theorem. □

Theorem 3.1.34 If an enqueue 𝑒 obtains a
timestamp 𝑐 and finishes at time 𝑡0 and is still
unmatched at time 𝑡1, then for any subrange 𝑇
of [𝑡0, 𝑡1] that does not overlap with a dequeue,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑟𝑜𝑜𝑡, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐 for any 𝑡𝑟, 𝑡𝑠 ∈ 𝑇 .

Proof We will prove a stronger version of
this theorem: Suppose an enqueue 𝑒 obtains a
timestamp 𝑐 and finishes at time 𝑡0 and is still
unmatched at time 𝑡1. For every 𝑛𝑖 ∈ 𝑝𝑎𝑡ℎ(𝑒), 𝑛0
is the leaf node and 𝑛𝑖 is the parent of 𝑛𝑖−1, 𝑖 ≥ 1.
If 𝑒 starts and finishes its node-𝑛𝑖-refresh phase
at 𝑡𝑠𝑡𝑎𝑟𝑡-𝑖 and 𝑡𝑒𝑛𝑑-𝑖 then for any subrange 𝑇 of
[𝑡𝑒𝑛𝑑-𝑖, 𝑡1] that does not overlap with a dequeue 𝑑
where 𝑛𝑖 ∈ 𝑝𝑎𝑡ℎ(𝑑) and 𝑑 hasn’t finished its node
𝑛𝑖 refresh phase, 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐
for any 𝑡𝑟, 𝑡𝑠 ∈ 𝑇 .

If 𝑡1 < 𝑡0 then the theorem holds.

Take 𝑟𝑒 to be the rank of the enqueuer that per-
forms 𝑒.

Suppose 𝑒 enqueues an item with the timestamp
𝑐 into the local SPSC at time 𝑡𝑒𝑛𝑞𝑢𝑒𝑢𝑒. Because
it’s still unmatched up until 𝑡1, 𝑐 is always in
the local SPSC during 𝑡𝑒𝑛𝑞𝑢𝑒𝑢𝑒 to 𝑡1. Therefore,
𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟𝑒, 𝑡) ≤ 𝑐 for any 𝑡 ∈ [𝑡𝑒𝑛𝑞𝑢𝑒𝑢𝑒, 𝑡1].
(1)

Suppose 𝑒 finishes its timestamp refresh phase
at 𝑡𝑟-𝑡𝑠. Because 𝑡𝑟-𝑡𝑠 ≥ 𝑡𝑒𝑛𝑞𝑢𝑒𝑢𝑒, due to (1),
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑒, 𝑡) ≤ 𝑐 for every 𝑡 ∈ [𝑡𝑟-𝑡𝑠, 𝑡1]. (2)

Consider the leaf node 𝑛0 ∈ 𝑝𝑎𝑡ℎ(𝑒). Due to (2),
𝑟𝑎𝑛𝑘(𝑛0, 𝑡) is always 𝑟𝑒 for any 𝑡 ∈ [𝑡𝑒𝑛𝑑-0, 𝑡1].
Also due to (2), 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛0, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐 for
any 𝑡𝑟, 𝑡𝑠 ∈ [𝑡𝑒𝑛𝑑-0, 𝑡1].

Consider any non-leaf node 𝑛𝑖 ∈ 𝑝𝑎𝑡ℎ(𝑒). We can
extend any subrange 𝑇 to the left until we either:
• Reach a dequeue 𝑑 such that 𝑛𝑖 ∈ 𝑝𝑎𝑡ℎ(𝑑) and
𝑑 has just finished its node-𝑛𝑖-refresh phase.

• Reach 𝑡𝑒𝑛𝑑-𝑖.

Consider one such subrange 𝑇𝑖.

Notice that 𝑇𝑖 always starts right after a node-
𝑛𝑖-refresh phase. Due to Theorem 3.1.32, there’s
always at least one successful refresh in this
node-𝑛𝑖-refresh phase.

Suppose the stronger version of the theorem
already holds for 𝑛𝑖−1. That is, if 𝑒 starts
and finishes its node-𝑛𝑖−1-refresh phase at
𝑡𝑠𝑡𝑎𝑟𝑡-(𝑖−1) and 𝑡𝑒𝑛𝑑-(𝑖−1) then for any subrange
𝑇 of [𝑡𝑒𝑛𝑑-(𝑖−1), 𝑡1] that does not overlap
with a dequeue 𝑑 where 𝑛𝑖 ∈ 𝑝𝑎𝑡ℎ(𝑑) and 𝑑
hasn’t finished its node 𝑛𝑖−1 refresh phase,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐 for any 𝑡𝑟, 𝑡𝑠 ∈ 𝑇 .

Extend 𝑇𝑖 to the left until we either:
• Reach a dequeue 𝑑 such that 𝑛𝑖 ∈ 𝑝𝑎𝑡ℎ(𝑑) and 𝑑

has just finished its node-𝑛𝑖−1-refresh phase.
• Reach 𝑡𝑒𝑛𝑑-(𝑖−1).

Take the resulting range to be 𝑇𝑖−1. Obviously,
𝑇𝑖 ⊆ 𝑇𝑖−1.

𝑇𝑖−1 satisifies both criteria:
• It’s a subrange of [𝑡𝑒𝑛𝑑-(𝑖−1), 𝑡1].
• It does not overlap with a dequeue 𝑑 where 𝑛𝑖 ∈
𝑝𝑎𝑡ℎ(𝑑) and 𝑑 hasn’t finished its node-𝑛𝑖−1-
refresh phase.

Therefore, 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖−1, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐 for any
𝑡𝑟, 𝑡𝑠 ∈ 𝑇𝑖−1.

Consider the last successful refresh on 𝑛𝑖 ending
not after 𝑇𝑖, take 𝑡𝑠′ and 𝑡𝑒′ to be the start and
end time of this refresh’s CAS-sequence. Because
right at the start of 𝑇𝑖, a node-𝑛𝑖-refresh phase
just ends, this refresh must be within this node-
𝑛𝑖-refresh phase. (4)

This refresh’s CAS-sequence must be within
𝑇𝑖−1. This is because right at the start of 𝑇𝑖−1, a
node-𝑛𝑖−1-refresh phase just ends and 𝑇𝑖−1 ⊇

11

Modified LTQueue without Load-Link/Store-Conditional

𝑇𝑖, 𝑇𝑖−1 must cover the node-𝑛𝑖-refresh phase
whose end 𝑇𝑖 starts from. Combining with (4),
𝑡𝑠′ ∈ 𝑇𝑖−1 and 𝑡𝑒′ ∈ 𝑇𝑖. (5)

Due to how refresh is defined and the fact that
𝑛𝑖−1 is a child of 𝑛𝑖:
• 𝑡𝑟𝑎𝑛𝑘 is the time refresh reads the rank stored

in 𝑛𝑖−1, so that 𝑡𝑠′ ≤ 𝑡𝑟𝑎𝑛𝑘 ≤ 𝑡𝑒′ . Combining
with (5), 𝑡𝑟𝑎𝑛𝑘 ∈ 𝑇𝑖−1.

• 𝑡𝑡𝑠 is the time refresh reads the timestamp from
that rank 𝑡𝑠′ ≤ 𝑡𝑡𝑠 ≤ 𝑡𝑒′ . Combining with (5),
𝑡𝑡𝑠 ∈ 𝑇𝑖−1.

• There exists a time 𝑡′, 𝑡𝑠′ ≤ 𝑡′ ≤ 𝑡𝑒′ ,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑒′), 𝑡′) ≤
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖−1, 𝑡𝑟𝑎𝑛𝑘), 𝑡𝑡𝑠). (6)

From (6) and the fact that 𝑡𝑟𝑎𝑛𝑘 ∈ 𝑇𝑖−1 and 𝑡𝑡𝑠 ∈
𝑇𝑖−1, 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑒′), 𝑡′) ≤ 𝑐.

There shall be no spsc_dequeue starting within 𝑡𝑠′
till the end of 𝑇𝑖 because:
• If there’s an spsc_dequeue starting within 𝑇𝑖,

then 𝑇𝑖’s assumption is violated.
• If there’s an spsc_dequeue starting after 𝑡𝑠′ but

before 𝑇𝑖, its dequeue must finish its node-𝑛𝑖-
refresh phase after 𝑡𝑠′ and before 𝑇𝑖. However,
then 𝑡𝑒′ is no longer the end of the last successful
refresh on 𝑛𝑖 not after 𝑇𝑖.

Because there’s no spsc_dequeue starting
in this timespan, 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑒′), 𝑡𝑒′) ≤
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑒′), 𝑡′) ≤ 𝑐.

If there’s no dequeue between 𝑡𝑒′ and the end of
𝑇𝑖 whose node-𝑛𝑖-refresh phase hasn’t finished,
then by Theorem 3.1.33, 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑟), 𝑡𝑠)
is monotonically decreasing for any 𝑡𝑟, 𝑡𝑠 start-
ing from 𝑡𝑒′ till the end of 𝑇𝑖. Therefore,
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐 for any 𝑡𝑟, 𝑡𝑠 ∈ 𝑇𝑖.

Suppose there’s a dequeue whose node-𝑛𝑖-re-
fresh phase is in progress some time between
𝑡𝑒′ and the end of 𝑇𝑖. By definition, this dequeue
must finish it before 𝑇𝑖. Because 𝑡𝑒′ is the time
of the last successful refresh on 𝑛𝑖 before 𝑇𝑖, 𝑡𝑒′
must be within the node-𝑛𝑖-refresh phase of
this dequeue and there should be no dequeue after
that. By the way 𝑡𝑒′ is defined, technically, this

dequeue has finished its node-𝑛𝑖-refresh phase
right at 𝑡𝑒′ . Therefore, similarly, we can apply
Theorem 3.1.33, 𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐 for
any 𝑡𝑟, 𝑡𝑠 ∈ 𝑇𝑖.

By induction, we have proved the stronger version
of the theorem. □

Corollary 3.1.35 If an enqueue 𝑒 obtains a
timestamp 𝑐 and finishes at time 𝑡0 and is
still unmatched at time 𝑡1, then for any sub-
range 𝑇 of [𝑡0, 𝑡1] that does not overlap with a
dequeue, 𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑟𝑜𝑜𝑡, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐 for
any 𝑡𝑟, 𝑡𝑠 ∈ 𝑇 .

Proof Call 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 to be the start and end
time of 𝑇 .

Applying Theorem 3.1.34, we have that
𝑚𝑖𝑛-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑟𝑜𝑜𝑡, 𝑡𝑟), 𝑡𝑠) ≤ 𝑐 for any 𝑡𝑟, 𝑡𝑠 ∈ 𝑇 .

Fix 𝑡𝑟 so that 𝑟𝑎𝑛𝑘(𝑟𝑜𝑜𝑡, 𝑡𝑟) = 𝑟. We have that
𝑚𝑖𝑛-𝑡𝑠(𝑟, 𝑡) ≤ 𝑐 for any 𝑡 ∈ 𝑇 .

𝑚𝑖𝑛-𝑡𝑠(𝑟, 𝑡) can only change due to a suc-
cessful refreshTimestamp on the enqueuer
node with rank 𝑟. Consider the last success-
ful refreshTimestamp on the enqueuer node
with rank 𝑟 not after 𝑇 . Suppose that
refreshTimestamp reads out the minimum time-
stamp of the local SPSC at 𝑡′ ≤ 𝑡𝑠𝑡𝑎𝑟𝑡.

Therefore, 𝑚𝑖𝑛-𝑡𝑠(𝑟, 𝑡𝑠𝑡𝑎𝑟𝑡) =
𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟, 𝑡′) ≤ 𝑐.

We will prove that after 𝑡′ until 𝑡𝑒𝑛𝑑, there’s no
spsc_dequeue on 𝑟 running.

Suppose the contrary, then this spsc_dequeue
must be part of a dequeue. By definition, this
dequeue must start and end before 𝑡𝑠𝑡𝑎𝑟𝑡, else it
violates the assumption of 𝑇 . If this spsc_dequeue
starts after 𝑡′, then its refreshTimestamp must
finish after 𝑡′ and before 𝑡𝑠𝑡𝑎𝑟𝑡. But this violates
the assumption that the last refreshTimestamp
not after 𝑡𝑠𝑡𝑎𝑟𝑡 reads out the minimum timestamp
at 𝑡′.

Therefore, there’s no spsc_dequeue on 𝑟 running
during [𝑡′, 𝑡𝑒𝑛𝑑]. Therefore, 𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟, 𝑡) re-

12

Modified LTQueue without Load-Link/Store-Conditional

mains constant during [𝑡′, 𝑡𝑒𝑛𝑑] because it’s not
MAX.

In conclusion, 𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟, 𝑡) ≤ 𝑐 for 𝑡 ∈
[𝑡′, 𝑡𝑒𝑛𝑑].

We have proved the theorem. □

Theorem 3.1.36 Given a rank 𝑟. If within [𝑡0, 𝑡1],
there’s no uncompleted enqueues on rank 𝑟 and all
matching dequeues for any completed enqueues on
rank 𝑟 has finished, then 𝑟𝑎𝑛𝑘(𝑛, 𝑡) ≠ 𝑟 for every
node 𝑛 and 𝑡 ∈ [𝑡0, 𝑡1].

Proof If 𝑛 doesn’t lie on the path from root to
the leaf node that’s attached to the enqueuer node
with rank 𝑟, the theorem obviously holds.

Due to Corollary 3.1.17, there can only one
enqueue and one dequeue at a time at an enqueuer
node with rank 𝑟. Therefore, there is a sequential
ordering within the enqueues and a sequential or-
dering within the dequeues. Therefore, it’s sensible
to talk about the last enqueue before 𝑡0 and the last
matching dequeue 𝑑 before 𝑡0.

Since all of these dequeues and enqueues work on
the same local SPSC and the SPSC is linearizable,
𝑑 must match the last enqueue. After this dequeue
𝑑, the local SPSC is empty.

When 𝑑 finishes its timestamp-refresh phase
at 𝑡𝑡𝑠 ≤ 𝑡0, due to Theorem 3.1.31, there’s at
least one successful refreshTimestamp call in this
phase. Because the last enqueue has been matched,
𝑚𝑖𝑛-𝑡𝑠(𝑟, 𝑡) = MAX for any 𝑡 ∈ [𝑡𝑡𝑠, 𝑡1].

Similarly, for a leaf node 𝑛0, suppose 𝑑 finishes
its node-𝑛0-refresh phase at 𝑡𝑟-0 ≥ 𝑡𝑡𝑠, then
𝑟𝑎𝑛𝑘(𝑛0, 𝑡) = DUMMY for any 𝑡 ∈ [𝑡𝑟-0, 𝑡1]. (1)

For any non-leaf node 𝑛𝑖 ∈ 𝑝𝑎𝑡ℎ(𝑑), when 𝑑 fin-
ishes its node-𝑛𝑖-refresh phase at 𝑡𝑟-𝑖, there’s
at least one successful refresh call during this
phase. Suppose this refresh call starts and ends at
𝑡𝑠𝑡𝑎𝑟𝑡-𝑖 and 𝑡𝑒𝑛𝑑-𝑖. Suppose 𝑟𝑎𝑛𝑘(𝑛𝑖−1, 𝑡) ≠ 𝑟 for
𝑡 ∈ [𝑡𝑟-(𝑖−1), 𝑡1]. By the way refresh is defined af-
ter this refresh call, 𝑛𝑖 will store some rank other
than 𝑟. Because of (1), after this up until 𝑡1, 𝑟 never
has a chance to be visible to a refresh on node

𝑛𝑖 during [𝑛𝑖−1, 𝑡]. In other words, 𝑟𝑎𝑛𝑘(𝑛𝑖, 𝑡) ≠
𝑟 for 𝑡 ∈ [𝑡𝑟-𝑖, 𝑡1].

By induction, we obtain the theorem. □

Theorem 3.1.37 If an enqueue 𝑒 precedes another
dequeue 𝑑, then either:
• 𝑑 isn’t matched.
• 𝑑 matches 𝑒.
• 𝑒 matches 𝑑′ and 𝑑′ precedes 𝑑.
• 𝑑 matches 𝑒′ and 𝑒′ precedes 𝑒.
• 𝑑 matches 𝑒′ and 𝑒′ overlaps with 𝑒.

Proof If 𝑑 doesn’t match anything, the theorem
holds.If 𝑑 matches 𝑒, the theorem also holds. Sup-
pose 𝑑 matches 𝑒′, 𝑒′ ≠ 𝑒.

If 𝑒 matches 𝑑′ and 𝑑′ precedes 𝑑, the theorem also
holds. Suppose 𝑒 matches 𝑑′ such that 𝑑 precedes
𝑑′ or is unmatched. (1)

Suppose 𝑒 obtains a timestamp of 𝑐 and 𝑒′ obtains
a timestamp of 𝑐′.

Because 𝑒 precedes 𝑑 and because an MPSC does
not allow multiple dequeues, from the start of 𝑑 at
𝑡0 until after line 5 of dequeue (Procedure 11) at 𝑡1,
𝑒 has finished and there’s no dequeue running that
has actually performed spsc_dequeue. Also by 𝑡0
and 𝑡1, 𝑒 is still unmatched due to (1).

Applying Corollary 3.1.35,
𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟𝑎𝑛𝑘(𝑟𝑜𝑜𝑡, 𝑡𝑥), 𝑡𝑦) ≤ 𝑐 for 𝑡𝑥, 𝑡𝑦 ∈
[𝑡0, 𝑡1]. Therefore, 𝑑 reads out a rank 𝑟 such
that 𝑚𝑖𝑛-𝑠𝑝𝑠𝑐-𝑡𝑠(𝑟, 𝑡) ≤ 𝑐 for 𝑡 ∈ [𝑡0, 𝑡1]. Conse-
quently, 𝑑 dequeues out a value with a timestamp
not greater than 𝑐. Because 𝑑 matches 𝑒′, 𝑐′ ≤ 𝑐.
However, 𝑒′ ≠ 𝑒 so 𝑐′ < 𝑐.

This means that 𝑒 cannot precede 𝑒′, because if so,
𝑐 < 𝑐′.

Therefore, 𝑒′ precedes 𝑒 or overlaps with 𝑒. □

Lemma 3.1.38 If 𝑑 matches 𝑒, then either 𝑒
precedes or overlaps with 𝑑.

Proof If 𝑑 precedes 𝑒, none of the local SPSCs can
contain an item with the timestamp of 𝑒. There-
fore, 𝑑 cannot return an item with a timestamp of
𝑒. Thus 𝑑 cannot match 𝑒.

13

Modified LTQueue without Load-Link/Store-Conditional

Therefore, 𝑒 either precedes or overlaps with 𝑑.□

Theorem 3.1.39 If a dequeue 𝑑 precedes another
enqueue 𝑒, then either:
• 𝑑 isn’t matched.
• 𝑑 matches 𝑒′ such that 𝑒′ precedes or overlaps

with 𝑒 and 𝑒′ ≠ 𝑒.

Proof If 𝑑 isn’t matched, the theorem holds.

Suppose 𝑑 matches 𝑒′. Applying Lemma 3.1.38, 𝑒′
must precede or overlap with 𝑑. In other words, 𝑑
cannot precede 𝑒′.

If 𝑒 precedes or is 𝑒′, then 𝑑 must precede 𝑒′, which
is contradictory.

Therefore, 𝑒′ must precede 𝑒 or overlap with 𝑒. □

Theorem 3.1.40 If an enqueue 𝑒0 precedes an-
other enqueue 𝑒1, then either:
• Both 𝑒0 and 𝑒1 aren’t matched.
• 𝑒0 is matched but 𝑒1 is not matched.
• 𝑒0 matches 𝑑0 and 𝑒1 matches 𝑑1 such that 𝑑0

precedes 𝑑1.

Proof If both 𝑒0 and 𝑒1 aren’t matched, the
theorem holds.

Suppose 𝑒1 matches 𝑑1. By Lemma 3.1.38, either 𝑒1
precedes or overlaps with 𝑑1.

If 𝑒0 precedes 𝑑1, applying Theorem 3.1.37 for 𝑑1
and 𝑒0:
• 𝑑1 isn’t matched, contradictory.
• 𝑑1 matches 𝑒0, contradictory.
• 𝑒0 matches 𝑑0 and 𝑑0 precedes 𝑑1, the theorem

holds.
• 𝑑1 matches 𝑒1 and 𝑒1 precedes 𝑒0, contradictory.
• 𝑑1 matches 𝑒1 and 𝑒1 overlaps with 𝑒0, contra-

dictory.

If 𝑑1 precedes 𝑒0, applying Theorem 3.1.39 for 𝑑1
and 𝑒0:
• 𝑑1 isn’t matched, contradictory.
• 𝑑1 matches 𝑒1 and 𝑒1 precedes or overlaps with
𝑒0, contradictory.

Consider that 𝑑1 overlaps with 𝑒0, then 𝑑1 must
also overlap with 𝑒1. Call 𝑟1 the rank of the
enqueuer that performs 𝑒1. Call 𝑡 to be the time

𝑑1 atomically reads the root’s rank on line 5 of
dequeue (Procedure 11). Because 𝑑1 matches 𝑒1, 𝑑1
must read out 𝑟1 at 𝑡1.

If 𝑒1 is the first enqueue of rank 𝑟1, then 𝑡 must
be after 𝑒1 has started, because otherwise, due to
Theorem 3.1.36, 𝑟1 would not be in 𝑟𝑜𝑜𝑡 before 𝑒1.

If 𝑒1 is not the first enqueue of rank 𝑟1, then 𝑡 must
also be after 𝑒1 has started. Suppose the contrary,
𝑡 is before 𝑒1 has started:
• If there’s no uncompleted enqueue of rank 𝑟1

at 𝑡 and they are all matched by the time 𝑡,
due to Theorem 3.1.36, 𝑟1 would not be in 𝑟𝑜𝑜𝑡
at 𝑡. Therefore, 𝑑1 cannot read out 𝑟1, which is
contradictory.

• If there’s some unmatched enqueue of rank 𝑟1 at
𝑡, 𝑑1 will match one of these enqueues instead
because:
• There’s only one dequeue at a time, so un-

matched enqueues at 𝑡 remain unmatched
until 𝑑1 performs an spsc_dequeue.

• Due to Corollary 3.1.17, all the enqueues of
rank 𝑟1 must finish before another starts.
Therefore, there’s some unmatched enqueue
of rank 𝑟1 finishing before 𝑒1.

• The local SPSC of the enqueuer node of rank
𝑟1 is serializable, so 𝑑1will favor one of these
enqueues over 𝑒1.

Therefore, 𝑡 must happen after 𝑒1 has started.
Right at 𝑡, no dequeue is actually modifying the
LTQueue state and 𝑒0 has finished. If 𝑒0 has been
matched at 𝑡 then the theorem holds. If 𝑒0 hasn’t
been matched at 𝑡, applying Theorem 3.1.34, 𝑑1
will favor 𝑒0 over 𝑒1, which is a contradiction.

We have proved the theorem. □

Theorem 3.1.41 If a dequeue 𝑑0 precedes another
dequeue 𝑑1, then either:
• 𝑑0 isn’t matched.
• 𝑑1 isn’t matched.
• 𝑑0 matches 𝑒0 and 𝑑1 matches 𝑒1 such that 𝑒0

precedes or overlaps with 𝑒1.

Proof If 𝑑0 isn’t matched or 𝑑1 isn’t matched,
the theorem holds.

14

Modified LTQueue without Load-Link/Store-Conditional

Suppose 𝑑0 matches 𝑒0 and 𝑑1 matches 𝑒1.

Suppose the contrary, 𝑒1 precedes 𝑒0. Applying
Theorem 3.1.37:
• Both 𝑒0 and 𝑒1 aren’t matched, which is contra-

dictory.
• 𝑒1 is matched but 𝑒0 is not matched, which con-

tradictory.
• 𝑒1 matches 𝑑1 and 𝑒0 matches 𝑑0 such that 𝑑1

precedes 𝑑0, which is contradictory.

Therefore, the theorem holds. □

Theorem 3.1.42 The modified LTQueue algo-
rithm is linearizable.

Proof Suppose some history 𝐻 produced from
the modified LTqueue algorithm.

If 𝐻 contains some pending method calls, we
can just wait for them to complete (because the
algorithm is wait-free, which we will prove later).
Therefore, now we consider all 𝐻 to contain only
completed method calls. So, we know that if a
dequeue or an enqueue in 𝐻 is matched or not.

If there are some unmatched enqueues, we can
append dequeues sequentially to the end of 𝐻 un-
til there’s no unmatched enqueues. Consider one
such 𝐻′.

We already have a strict partial order →𝐻′ on 𝐻′.

Because the queue is MPSC, there’s already a total
order among the dequeues.

We will extend →𝐻′ to a strict total order ⇒𝐻′ on
𝐻′ as follows:
• If 𝑋 →𝐻′𝑌 then 𝑋 ⇒𝐻′𝑌 . (1)
• If a dequeue 𝑑 matches 𝑒 then 𝑒 ⇒𝐻′𝑑. (2)
• If a dequeue 𝑑0 matches 𝑒0 and another dequeue

matches 𝑒1 such that 𝑑0 ⇒𝐻′𝑑1 then 𝑒0 ⇒𝐻′𝑒1.
(3)

• If a dequeue 𝑑 overlaps with an enqueue 𝑒 but
does not match 𝑒, 𝑑 ⇒𝐻′𝑒. (4)

We will prove that ⇒𝐻′ is a strict total order on 𝐻′.
That is, for every pair of different method calls 𝑋
and 𝑌 , either exactly one of these is true 𝑋 ⇒𝐻′𝑌
or 𝑌 ⇒𝐻′𝑋 and for any 𝑋, 𝑋 ⇏𝐻′𝑋.

It’s obvious that 𝑋 ⇏𝐻′𝑋.

If 𝑋 and 𝑌 are dequeues, because there’s a total
order among the dequeues, either exactly one of
these is true: 𝑋 →𝐻′𝑌 or 𝑌 →𝐻′𝑋. Then due to
(1), either 𝑋 ⇒𝐻′𝑌 or 𝑌 ⇒𝐻′𝑋. Notice that we
cannot obtain 𝑋 ⇒𝐻′𝑌 or 𝑌 ⇒𝐻′𝑋 from (2), (3),
or (4).
Therefore, exactly one of 𝑋 ⇒𝐻′𝑌 or 𝑌 ⇒𝐻′𝑋 is
true. (∗)

If 𝑋 is dequeue and 𝑌 is enqueue, in this case (3)
cannot help us obtain either 𝑋 ⇒𝐻′𝑌 or 𝑌 ⇒𝐻′𝑋,
so we can disregard it.
• If 𝑋 →𝐻′𝑌 , then due to (1), 𝑋 ⇒𝐻′𝑌 . By def-

inition, 𝑋 precedes 𝑌 , so (4) cannot apply.
Applying Theorem 3.1.39, either
• 𝑋 isn’t matched, (2) cannot apply. Therefore,
𝑌 ⇏𝐻′𝑋.

• 𝑋 matches 𝑒′ and 𝑒′ ≠ 𝑌 . Therefore, 𝑋 does
not match 𝑌 , or (2) cannot apply. Therefore,
𝑌 ⇏𝐻′𝑋.

Therefore, in this case, 𝑋 ⇒𝐻′𝑌 and 𝑌 ⇏𝐻′𝑋.
• If 𝑌 →𝐻′𝑋, then due to (1), 𝑌 ⇒𝐻′𝑋. By defin-

ition, 𝑌 precedes 𝑋, so (4) cannot apply. Even if
(2) applies, it can only help us obtain 𝑌 ⇒𝐻′𝑋.
Therefore, in this case, 𝑌 ⇒𝐻′𝑋 and 𝑋 ⇏𝐻′𝑌 .

• If 𝑋 overlaps with 𝑌 :
• If 𝑋 matches 𝑌 , then due to (2), 𝑌 ⇒𝐻′

𝑋. Because 𝑋 matches 𝑌 , (4) cannot apply.
Therefore, in this case 𝑌 ⇒𝐻′𝑋 but 𝑋 ⇏𝐻′𝑌 .

• If 𝑋 does not match 𝑌 , then due to (4), 𝑋 ⇒
𝐻′𝑌 . Because 𝑋 doesn’t match 𝑌 , (2) cannot
apply. Therefore, in this case 𝑋 ⇒𝐻′𝑌 but
𝑌 ⇏𝐻′𝑋.

Therefore, exactly one of 𝑋 ⇒𝐻′𝑌 or 𝑌 ⇒𝐻′𝑋 is
true. (∗ ∗)

If 𝑋 is enqueue and 𝑌 is enqueue, in this case (2)
and (4) are irrelevant:

15

Modified LTQueue without Load-Link/Store-Conditional

• If 𝑋 →𝐻′𝑌 , then due to (1), 𝑋 ⇒𝐻′𝑌 . By defin-
ition, 𝑋 precedes 𝑌 . Applying Theorem 3.1.40,
• Both 𝑋 and 𝑌 aren’t matched, then (3) cannot

apply. Therefore, in this case, 𝑌 ⇏𝐻′𝑋.
• 𝑋 is matched but 𝑌 is not matched, then (3)

cannot apply. Therefore, in this case, 𝑌 ⇏𝐻′𝑋.
• 𝑋 matches 𝑑𝑥 and 𝑌 matches 𝑑𝑦 such that 𝑑𝑥

precedes 𝑑𝑦, then (3) applies and we obtain
𝑋 ⇒𝐻′𝑌 .

Therefore, in this case, 𝑋 ⇒𝐻′𝑌 but 𝑌 ⇏𝐻′𝑋.
• If 𝑌 →𝐻′𝑋, this case is symmetric to the first

case. We obtain 𝑌 ⇒𝐻′𝑋 but 𝑋 ⇏𝐻′𝑌 .
• If 𝑋 overlaps with 𝑌 , because in 𝐻′, all
enqueues are matched, then, 𝑋 matches 𝑑𝑥 and
𝑑𝑦. Because 𝑑𝑥 either precedes or succeeds 𝑑𝑦,
Applying (3), we obtain either 𝑋 ⇒𝐻′𝑌 or 𝑌 ⇒
𝐻′𝑋 and there’s no way to obtain the other.

Therefore, exactly one of 𝑋 ⇒𝐻′𝑌 or 𝑌 ⇒𝐻′𝑋 is
true. (∗ ∗ ∗)

From (∗), (∗ ∗), (∗ ∗ ∗), we have proved that ⇒𝐻′

is a strict total ordering that is consistent with →
𝐻′. In other words, we can order method calls in
𝐻′ in a sequential manner. We will prove that this
sequential order is consistent with FIFO semantics:

• An item can only be dequeued once: This is
trivial as a dequeue can only match one enqueue.

• Items are dequeued in the order they are
enqueued: Suppose there are two enqueues 𝑒1, 𝑒2
such that 𝑒1 ⇒𝐻′𝑒2 and suppose they match 𝑑1
and 𝑑2. Then we have obtained 𝑒1 ⇒𝐻′𝑒2 either
because:
• (3) applies, in this case 𝑑1 ⇒𝐻′𝑑2 is a condi-

tion for it to apply.
• (1) applies, then 𝑒1 precedes 𝑒2, by

Theorem 3.1.40, 𝑑1 must precede 𝑑2, thus
𝑑1 ⇒𝐻′𝑑2.

Therefore, if 𝑒1 ⇒𝐻′𝑒2 then 𝑑1 ⇒𝐻′𝑑2.
• An item can only be dequeued after it’s
enqueued: Suppose there is an enqueue 𝑒
matched by 𝑑. By (2), obviously 𝑒 ⇒𝐻′𝑑.

• If the queue is empty, dequeues return nothing.
Suppose a dequeue 𝑑 such that any 𝑒 ⇒𝐻′𝑑 is
all matched by some 𝑑′ and 𝑑′ ⇒𝐻′𝑑, we will
prove that 𝑑 is unmatched. By Lemma 3.1.38, 𝑑
can only match an enqueue 𝑒0 that precedes or
overlaps with 𝑑.
• If 𝑒0 precedes 𝑑, by our assumption, it’s

already matched by another dequeue.
• If 𝑒0 overlaps with 𝑑, by our assumption, 𝑑 ⇒
𝐻′𝑒0 because if 𝑒0 ⇒𝐻′𝑑, 𝑒0 is already matched
by another 𝑑′. Then, we can only obtain this
because (4) applies, but then 𝑑 does not match
𝑒0.

Therefore, 𝑑 is unmatched.

In conclusion, ⇒𝐻′ is a way we can order method
calls in 𝐻′ sequentially that conforms to FIFO se-
mantics. Therefore, we can also order method calls
in 𝐻 sequentially that conforms to FIFO semantics
as we only append dequeues sequentially to the
end of 𝐻 to obtain 𝐻′.

We have proved the theorem. □

3.2. Memory safety

Memory allocation and deallocation are per-
formed only in the SPSC data structure. Since [1]

16

Modified LTQueue without Load-Link/Store-Conditional

has proved that it’s memory-safe, the modified
algorithm is also memory-safe.

3.3. Wait-freedom

All the procedures enqueue, dequeue, refresh,
refreshTimestamp, refreshLeaf, propagate are
wait-free because there’s no possibility of inifinite
loops and a process waiting for another process.

References

[1] P. Jayanti and S. Petrovic, “Logarithmic-
time single deleter, multiple inserter wait-free
queues and stacks,” 2005, Springer-Verlag. doi:
10.1007/11590156_33.

[2] M. Herlihy and N. Shavit, The Art of Multi-
processor Programming, Revised Reprint. Mor-
gan Kaufmann, 2012.

17

https://doi.org/10.1007/11590156_33

	Original LTQueue
	Local queue algorithm
	LTQueue algorithm

	Adaption of LTQueue without load-link/store-conditional
	Proof of correctness
	Linearizability
	Definition of linearizability
	Definition of linearizable MPSC
	Proof of linearizability

	Memory safety
	Wait-freedom

	References

