
Slot-queue - An optimized wait-free distributed MPSC

Slot-queue - An optimized wait-free distributed MPSC

1. Motivation

A good example of a wait-free MPSC has been pre-
sented in [1]. In this paper, the authors propose a
novel tree-structure and a min-timestamp scheme
that allow both enqueue and dequeue to be wait-
free and always complete in Θ(log 𝑛) where 𝑛 is
the number of enqueuers.

We have tried to port this algorithm to distributed
context using MPI. The most problematic issue
was that the original algorithm uses load-link/
store-conditional (LL/SC). To adapt to MPI, we
have to propose some modification to the original
algorithm to make it use only compare-and-swap
(CAS). Even though the resulting algorithm pretty
much preserve the original algorithm’s character-
istic, that is wait-freedom and time complexity of
Θ(log 𝑛), we have to be aware that this is Θ(log 𝑛)
remote operations (and in reality, there are about
2 ∗ log 𝑛 to 10 ∗ log 𝑛 remote operations), which is
very expensive.

Therefore, to be more suitable for distributed con-
text, we propose a new algorithm that’s inspired
by LTQueue, in which both enqueue and dequeue
only perform a constant number of remote oper-
ations, at the cost of dequeue having to perform
Θ(𝑛) local operations, where 𝑛 is the number of
enqueuers. Because remote operations are much
more expensive, this might be a worthy tradeoff.

2. Structure

Each enqueue will have a local SPSC as in
LTQueue [1] that supports dequeue, enqueue and
readFront. There’s a global queue whose entries
store the minimum timestamp of the correspond-
ing enqueuer’s local SPSC.

Figure 1: Basic structure of slot queue

3. Pseudocode

3.1. SPSC

The SPSC of [1] is kept in tact, except that we
change it into a circular buffer implementation.

Types
data_t = The type of data stored
spsc_t = The type of the local SPSC

record
First: int
Last: int
Capacity: int
Data: an array of data_t of capacity
Capacity

end

Shared variables
First: index of the first undequeued entry
Last: index of the first unenqueued entry

Initialization
First = Last = 0

Set Capacity and allocate array.

The procedures are given as follows.

1

Slot-queue - An optimized wait-free distributed MPSC

Procedure 1: spsc_enqueue(v: data_t) re-
turns bool

1 if (Last + 1 == First)
2 return false
3 Data[Last] = v
4 Last = (Last + 1) % Capacity
5 return true

Procedure 2: spsc_dequeue() returns data_t

6 if (First == Last) return ⊥
7 res = Data[First]
8 First = (First + 1) % Capacity
9 return res

Procedure 3: spsc_readFront returns data_t

10 if (First == Last)
11 return ⊥
12 return Data[First]

3.2. Slot-queue

The slot-queue types and structures are given as
follows:

Types
data_t = The type of data stored
timestamp_t = uint64_t
spsc_t = The type of the local SPSC

Shared variables
slots: An array of timestamp_t with the num-
ber of entries equal the number of enqueuers
spscs: An array of spsc_t with the number of
entries equal the number of enqueuers
counter: uint64_t

Initialization
Initialize all local SPSCs.

Initialize slots entries to MAX.

The enqueue operations are given as follows:

Procedure 4: enqueue(rank: int, v: data_t)
returns bool

1 timestamp = FFA(counter)
2 value = (v, timestamp)
3 res = spsc_enqueue(spscs[rank], value)
4 if (!res) return false
5 if (!refreshEnqueue(rank, timestamp))
6 refreshEnqueue(rank, timestamp)
7 return res

Procedure 5: refreshEnqueue(rank: int, ts:
timestamp_t) returns bool

8 old-timestamp = slots[rank]
9 front = spsc_readFront(spscs[rank])

10
new-timestamp = front == ⊥ ? MAX :
front.timestamp

11 if (new-timestamp != ts)
12 return true

13
return CAS(&slots[rank], old-timestamp,
new-timestamp)

The dequeue operations are given as follows:

Procedure 6: dequeue() returns data_t

14 rank = readMinimumRank()
15 if (rank == DUMMY || slots[rank] == MAX)
16 return ⊥
17 res = spsc_dequeue(spscs[rank])

18 if (res == ⊥) return ⊥
19 if (!refreshDequeue(rank))
20 refreshDequeue(rank)
21 return res

2

Slot-queue - An optimized wait-free distributed MPSC

Procedure 7: readMinimumRank() returns int

22 rank = length(slots)
23 min-timestamp = MAX
24 for index in 0..length(slots)
25 timestamp = slots[index]
26 if (min-timestamp < timestamp)
27 rank = index
28 min-timestamp = timestamp
29 old-rank = rank
30 for index in 0..old-rank
31 timestamp = slots[index]
32 if (min-timestamp < timestamp)
33 rank = index
34 min-timestamp = timestamp

35
return rank == length(slots) ? DUMMY :
rank

Procedure 8: refreshDequeue(rank: int) re-
turns bool

36 old-timestamp = slots[rank]
37 front = spsc_readFront(spscs[rank])

38
new-timestamp = front == ⊥ ? MAX :
front.timestamp

39 if (front != ⊥)
40 slots[rank] = new-timestamp
41 return true

42
return CAS(&slots[rank], old-timestamp,
new-timestamp)

4. Linearizability

5. Wait-freedom

6. Memory-safety

References

[1] P. Jayanti and S. Petrovic, “Logarithmic-
time single deleter, multiple inserter wait-free
queues and stacks,” 2005, Springer-Verlag. doi:
10.1007/11590156_33.

3

https://doi.org/10.1007/11590156_33

	Motivation
	Structure
	Pseudocode
	SPSC
	Slot-queue

	Linearizability
	Wait-freedom
	Memory-safety
	References

