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Chapter I Introduction
The demand for computation power has always been increasing relentlessly. Increas-
ingly complex computation problems arise and accordingly more computation power is
required to solve them. Much engineering efforts have been put forth towards obtaining
more computation power. A popular topic in this regard is distributed computing: The
combined power of clusters of commodity hardware can surpass that of a single powerful
machine. To fully take advantage of the potential of distributed computing, specialized
algorithms and data structures need to be devised. Noticeably, multi-producer single-
consumer (MPSC) is one of those data structures that are utilized heavily in distributed
computing, forming the backbone of many applications. Therefore, an MPSC can easily
present a performance bottleneck if not designed properly, resulting in loss of computa-
tion power. A desirable distributed MPSC should be able to exploit the highly concurrent
nature of distributed computing. One favorable characteristic of distributed data struc-
tures is non-blocking or more specifically, lock-freedom. Lock-freedom guarantees that
if some processes suspend or die, other processes can still complete. This provides both
progress guarantee and fault-tolerance, especially in distributed computing where nodes
can fail any time. Thus, the rest of this document concerns itself with investigating and
devising efficient non-blocking distributed MPSCs. Interestingly, we choose to adapt
current MPSC algorithms in the shared-memory literature to port into distributed context
using the approach introduced in Chapter III.

1.1 Motivation

Lock-free MPSC and other FIFO variants, such as multi-producer multi-consumer
(MPMC), concurrent single-producer single-consumer (SPSC), are heavily studied in
the shared memory literature, dating back from the 1980s-1990s [2], [3], [4] and more
recently [5], [6]. It comes as no surprise that algorithms in this domain are highly
developed and optimized for performance and scalability. However, most research about
MPSC or FIFO algorithms in general completely disregard the available state-of-the-
art algorithms in the shared memory literature. This is largely because the programming
model used for distributed computing differs from that of shared memory. However,
the gap between the two domains has been bridged with the new capabilities added to
MPI-3 RMA API: lock-free shared-memory algorithms can be straightforwardly ported
to distributed context using this programming model. This presents an opportunity to
make use of the highly accumulated research in the shared memory literature, which if
adapted and mapped properly to the distributed context, may produce comparable results
to algorithms exclusively devised within the distributed computing domain. Therefore,
we decide to take this novel route to developing new non-blocking MPSC algorithms:
Port and adapt potential lock-free shared-memory MSPCs to distributed context using
the MPI-3 RMA programming model. If this approach proves to be effective, a huge
intellectual reuse of shared-memory MSPC algorithms into the distributed domain is
possible. Consequently, there may be no need to develop distributed MPSC algorithms
from the ground up.
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1.2 Objective

This thesis aims to:
• Investigate state-of-the-art shared-memory MPSCs.
• Select potential MPSC algorithms to be ported to distributed MPSC algorithms using

MPI-3 RMA.
• Adapt/Optimize the ported algorithms to fit the constraints of distributed computing.
• Benchmark the ported algorithms.

1.3 Structure

The rest of this report is structured as follows:

Chapter II discusses the theoretical foundation this thesis is based on and the technical
terminology that’s heavily utilized in this domain. As mentioned, this thesis investigates
state-of-the-art shared-memory MPSCs. Therefore, we discuss the theory related to the
design of concurrent algorithms such as lock-freedom and linearizability, the practical
challenges such as the ABA problem and safe memory reclamation problem. We then
explore the utilities offered by C++11 to implement concurrent algorithms and MPI-3 to
port shared memory algorithms.

Chapter III discusses the general idea we use to port shared-memory algorithms while
keeping their lock-freedom characteristic using MPI-3 RMA. We further discuss the
possibilities of further optimization using MPI-3 SHM and C++11 to optimize intra-node
communication. This presents a potential performance boost for NUMA-aware shared-
memory algorithms

Chapter IV surveys the shared-memory literature for state-of-the-art queue algorithms,
specifically MPSC and SPSC algorithms (as SPSC can be modified to implement
MPSC). We specifically focus on algorithms that have the potential to be ported
efficiently to distributed context, such as NUMA-aware or can be made to be NUMA-
aware. We then conclude with a comparison of the most potential shared-memory queue
algorithms.

Chapter V selects some of the algorithms we have surveyed and introduce modification
to fit the distributed context. We further introduce optimization based on our domain
knowledge, which the shared-memory algorithms, in their inception, are oblivious to.

Chapter VI introduces our setup and benchmarking processes to obtain some preliminary
results. We also analyze the result to assess the various factors that affect the performance
of an algorithm and its implementation.

Chapter VII and Chapter VIII concludes what we have accomplished in this thesis and
considers future possible improvements to our research.
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Chapter II Background

2.1 Irregular applications

Irregular applications are a class of programs particularly interesting in distributed
computing. They are characterized by:

• Unpredictable memory access: Before the program is actually run, we cannot know
which data it will need to access. We can only know that at run time.

• Data-dependent control flow: The decision of what to do next (such as which data tp
accessed next) is highly dependent on the values of the data already accessed. Hence
the unpredictable memory access property because we cannot statically analyze the
program to know which data it will access. The control flow is inherently engraved
in the data, which is not known until runtime.

Irregular applications are interesting because they demand special treatments to achieve
high performance. One specific challenge is that this type of applications is hard to
model in traditional MPI APIs. The introduction of MPI RMA (remote memory access)
in MPI-2 and its improvement in MPI-3 has significantly improved MPI’s capability to
express irregular applications comfortably.

2.2 Multiple�producer, single�consumer (MPSC)

Multiple-producer, single-consumer (MPSC) is a specialized concurrent first-in first-out
(FIFO) data structure. A FIFO is a container data structure where items can be inserted
into or taken out of, with the constraint that the items that are inserted earlier are taken out
of earlier. Hence, it’s also known as the queue data structure. The process that performs
item insertion into the FIFO is called the producer and the process that performs items
deletion (and retrieval) is called the consumer. In concurrent queues, multiple producers
and consumers can run in parallel. Concurrent queues have many important applications,
namely event handling, scheduling, etc. One class of concurrent FIFOs is MPSC, where
one consumer may run in parallel with multiple producers. The reasons we’re interested
in MPSCs instead of the more general multiple-producer, multiple-consumer data struc-
tures (MPMCs) are that (1) high-performance and high-scalability MPSCs are much
simpler to design than MPMCs while (2) MPSCs are powerful enough - its consensus
number equals the number of producers [7].

2.3 Progress guarantee

Many concurrent algorithms are based on locks to create mutual exclusion, in which
only some processes that have acquired the locks are able to act, while the others have to
wait. While lock-based algorithms are simple to read, write and verify, these algorithms
are said to be blocking: One slow process may slow down the other faster processes,
for example, if the slow process successfully acquires a lock and then the OS decides to
suspends it to schedule another one, this means until the process is awken again, the other
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processes that contend for the lock cannot continue. Lock-based algorithms introduces
many problems such as:

• Deadlock: There’s a circular lock-wait dependencies among the processes, effec-
tively prevent any processes from making progress.

• Convoy effect: One long process holding the lock will block other shorter processes
contending for the lock.

• Priority inversion: A higher-priority process effectively has very low priority because
it has to wait for another low priority process.

Furthermore, if a process that holds the lock dies, this will corrupt the whole program,
and this possibility can happen more easily in distributed computing, due to network
failures, node falures, etc. Therefore, while lock-based algorithms are easy to write,
they do not provide progress guarantee because deadlock or livelock can occur and
unnecessarily restrictive regarding its use of mutual exclusion. These algorithms are said
to be blocking. An algorithm is said to be non�blocking if a failure or slow-down in one
process cannot cause the failure or slowdown in another process. Lock-free and wait-free
algorithms are to especially interesting subclasses of non-blocking algorithms. Unlike
lock-based algorithms, they provide progress guarantee.

2.3.1 Lock�free algorithms

Lock-free algorithms provide the following guarantee: Even if some processes are
suspended, the remaining processes are ensured to make global progress and complete
in bounded time. This property is invaluable in distributed computing, one dead or sus-
pended process will not block the whole program, providing fault-tolerance. Designing
lock-free algorithms requires careful use of atomic instructions, such as Fetch-and-add
(FAA), Compare-and-swap (CAS), etc. One well-known technique in achieving lock-
freedom is the help mechanism, made popular by [4].

2.3.2 Wait�free algorithms

Wait-freedom is a stronger progress guarantee than lock-freedom. While lock-freedom
ensures that at least one of the alive processes will make progress, wait-freedom guaran-
tees that any alive processes will finish in bounded time. Wait-freedom is useful to have
because it prevents starvation. Lock-freedom still allows the possibility of one process
having to wait for another indefinitely, as long as some still makes progress.

2.4 Correctness � Linearizability

Correctness of concurrent algorithms is hard to defined, especially when it comes to
the semantics of concurrent data structures like MPSC. One effort to formalize the
correctness of concurrent data structures is the definition of linearizability. A method
call on the FIFO can be visualized as an interval spanning two points in time. The starting
point is called the invocation event and the ending point is called the response event.
Linearizability informally states that each method call should appear to take effect
instantaneously at some moment between its invocation event and response event [8].
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The moment the method call takes effect is termed the linearization point. Specifically,
suppose the followings:

• We have 𝑛 concurrent method calls 𝑚1, 𝑚2, …, 𝑚𝑛.
• Each method call 𝑚𝑖 starts with the invocation event happening at timestamp 𝑠𝑖

and ends with the response event happening at timestamp 𝑒𝑖. We have 𝑠𝑖 < 𝑒𝑖 for
all 1 ≤ 𝑖 ≤ 𝑛.

• Each method call 𝑚𝑖 has the linearization point happening at timestamp 𝑙𝑖, so that
𝑠𝑖 ≤ 𝑙𝑖 ≤ 𝑒𝑖.

Then, linerizability means that if we have 𝑙1 < 𝑙2 < … < 𝑙𝑛, the effect of these 𝑛
concurrent method calls 𝑚1, 𝑚2, …, 𝑚𝑛 must be equivalent to calling 𝑚1, 𝑚2, …, 𝑚𝑛
sequentially, one after the other in that order.

Figure 1: Linerization points of method 1, method 2, method 3, method 4 happens at
𝑡1 < 𝑡2 < 𝑡3 < 𝑡4, therefore, their effects will be observed in this order as if we call

method 1, method 2, method 3, method 4 sequentially

2.5 Common issues when designing lock�free algorithms

2.5.1 ABA problem

In implementing concurrent lock-free algorithms, hardware atomic instructions are
utilized to achieve linearizability. The most popular atomic operation instruction is
compare-and-swap (CAS). The reason for its popularity is (1) CAS is a universal atomic
instruction - it has the concensus number of ∞ - which means it’s the most powerful
atomic instruction [9] (2) CAS is implemented in most hardware (3) some concurrent
lock-free data structures such as MPSC can only be implemented using powerful atomic
instruction such as CAS. The semantic of CAS is as follows. Given the instruction
CAS(memory location, old value, new value), atomically compares the value at
memory location to see if it equals old value; if so, sets the value at memory location to
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new value and returns true; otherwise, leaves the value at memory location unchanged
and returns false. Concurrent algorithms often utilize CAS as follows:
1. Read the current value old value = read(memory location).
2. Compute new value from old value by manipulating some resources associated

with old value and allocating new resources for new value.
3. Call CAS(memory location, old value, new value). If that succeeds, the new

resources for new value remain valid because it was computed using valid resources
associated with old value, which has not been modified since the last read. Other-
wise, free up new value because old value is no longer there, so its associated
resources are not valid.

This scheme is susceptible to the notorious ABA problem:
1. Process 1 reads the current value of memory location and reads out A.
2. Process 1 manipulates resources associated with A, and allocates resources based on

these resources.
3. Process 1 suspends.
4. Process 2 reads the current value of memory location and reads out A.
5. Process 2 CAS(memory location, A, B) so that resources associated with A are no

longer valid.
6. Process 3 CAS(memory location, B, A) and allocates new resources associated

with A.
7. Process 1 continues and CAS(memory location, A, new value) relying on the fact

that the old resources associated with A are still valid while in fact they aren’t.

To safe-guard against ABA problem, one must ensure that between the time a process
reads out a value from a shared memory location and the time it calls CAS on that location,
there’s no possibility another process has CAS the memory location to the same value.
Some notable schemes are monotonic version tag (used in [4]) and hazard pointer
(introduced in [10]).

2.5.2 Safe memory reclamation problem

The problem of safe memory reclamation often arises in concurrent algorithms that
dynamically allocate memory. In such algorithms, dynamically-allocated memory must
be freed at some point. However, there’s a good chance that while a process is freeing
memory, other processes contending for the same memory are keeping a reference to that
memory. Therefore, deallocated memory can potentially be accessed, which is errone-
neous. Solutions ensure that memory is only freed when no other processes are holding
references to it. In garbage-collected programming environments, this problem can
be conveniently push to the garbage collector. In non-garbage-collected programming
environments, however, custom schemes must be utilized. Examples include using a
reference counter to count the number of processes holding a reference to some memory
and hazard pointer [10] to announce to other processes that some memory is not to
be freed.
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2.6 C++11 concurrency

2.6.1 Motivation

C++11 came with a lot of improvements. One such improvement is the native support
of multithreading inside the C++ standard library (STL). The main motivation was
portability and ergonomics along with two design goals: high-level OOP facilities for
working with multithreading in general while still exposing enough low-level details so
that performance tuning is possible when one wants to drop down to this level. [11]

Before C++11, to write concurrent code, programmers had to resort to compiler-specific
extensions [11]. This worked but was not portable as the additional semantics of
concurrency introduced by compiler extensions was not formalized in the C++ standard.
Therefore, C++11 had come to define a multithreading-aware memory model, which is
used to dictate correct concurrent C++11 programs.

2.6.2 C++11 memory model

The C++11 memory model plays the foundational role in enabling native multithreading
support. The C++11 memory model is not a syntatical feature or a library feature, rather
it’s a model to reason about the semantics of concurrent C++11 programs. In other words,
the C++11 multithreading-aware memory model enables the static analysis of concurrent
C++11 programs. This, in essence, is beneficial to two parties: the compiler and the
programmer.

From the compiler’s point of view, it needs to translate the source code into correct
machine code. Many modern CPUs are known to utilize out-of-order execution, or
instruction reordering to gain better pipeline throughput. This reordering is transparent
with respect to a single thread - it still observes the effect of the instructions in the
program order. However, this reordering is not transparent in concurrent programs, in
which case, synchronizing instructions are necessary, so the compiler has to keep this in
mind. With the possibility of concurrency, it needs to conservatively apply optimizations
as certain optimizations only work in sequential programs. However, optimization is
important to achieve performance, if the compiler just disables the any optimizations
altogether in the face of concurrency, the performance gained by using concurrency
would be adversely affected. Here, the C++11 memory model comes into play. It allows
the compiler to reason which optimization is valid and which is not in the presence of
concurrency. Additionally, the compiler can reason about where to place synchronizing
instructions to ensure the correctness of concurrent operations. Therefore, the C++11
memory allows the compiler to generate correct and performant machine code.

Similarly, from the programmer’s point of view, one can verify that their concurrent
program’s behavior is well-defined and reason whether their programs unnecessarily
disable any optimizations. This, helps the programmer to write correct and performant
C++11 concurrent programs.
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The C++11 memory consists of two aspects: the structural aspects and the concurrency
aspects [11].

2.6.2.1 Structural aspects

The structural aspects deal with how variables are laid out in memory.

An object in C++ is defined as “a region of storage”. Concurrent accesses can happen to
any “region of storage”. These regions of storage can vary in size. One can say that there
are always concurrent accesses to RAM. However, do these concurrent accesses always
cause race conditions? Intuitively, no. To properly define which concurrent accesses can
actually cause race conditions, the C++11 memory model defines the concept of memory
location. That is, the C++11 memory model views an object as one or more memory
locations. Only concurrent accesses to the same memory location can possibly cause
race conditions. Conflicting concurrent accesses to the same memory location (read/
write or write-write) always cause race conditions.

The rule of what comprise a memory location is as follows [11]:
• Any object or sub-object (class instance’s field) of a scalar type is a memory location.
• Any sequence of adjacent bit fields is also a memory location.

An example: In the below struct, a is a memory location, b and c is another and d is
the last.

struct S {

  int a;

  int b: 8;

  int c: 8;

       : 0;

  int d: 12;

}

Listing 1: Example memory locations for a user-defined struct

2.6.2.2 Concurrency aspects

Generally speaking, concurrent accesses to different memory locations are fine while
concurrent accesses to the same memory location cause race conditions. However, race
conditions do not necessarily cause undefined behavior. To avoid undefined behavior
with concurrent accesses to the same memory location, one must use atomic operations.
The semantics of C++11 atomics will be discussed in the next section.

2.6.3 C++11 atomics

An atomic operation is an indivisible operation, that is, it either hasn’t started executing
or has finished executing [11].

Atomic operations can only be performed on atomic types: C++11 introduces
the std::atomic<T> template type, wrapping around a non-atomic type to allow
atomic operations on objects of that type. Additionally, C++11 also introduces the
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std::atomic_flag type that acts like an atomic flag. One special property of
std::atomic_flag is that any operations on it is guaranteed to be lock-free, while the
others depend on the platform and size.

By C++17, std::atomic_flag only supports two operations:

Operation Usage
clear Atomically sets the flag to false

test_and_set Atomically sets the flag to true and returns its previous value

Table 1: Supported atomic operations on std::atomic_flag (C++17)

Because of its simplicity, std::atomic_flag operations are guaranteed to be lock-free.

Some available operations on other atomic types are summarized in the following table
[11]:

Operation atomic<bool> atomic<T*> atomic

<integral-

type>

atomic

<other-type>

load Y Y Y Y
store Y Y Y Y

exchange Y Y Y Y
compare_

exchange_

weak, compare_
exchange_

strong

Y Y Y Y

fetch_add, += Y Y
fetch_sub, -= Y Y
fetch_or, |= Y
fetch_and, &= Y
fetch_xor, ^= Y

++, -- Y Y

Table 2: Available atomic operations on atomic types (C++17)

Each atomic operation can generally accept an argument of type std::memory_order,
which is used to specify how memory accesses are to be ordered around an atomic
operation.

Any atomic operations beside load and store is called read-modified-write (RMW)
operations.

The following is the table of possible std::memory_order values:
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Name Usage Load Store RMW
memory_order

_relaxed

No synchronization imposed on other
reads or writes

Y Y Y

memory_order

_acquire

No reads or writes after this operation
in the current thread can be reordered

before this operation

Y Y

memory_order

_release

No reads or writes before this oper-
ation in the current thread can be

reordered after this operation

Y Y

memory_order

_acq_rel

No reads or writes before this oper-
ation in the current thread can be re-
ordered after this operation. No reads
or writes after this operation can be

reordered before this operation

Y

memory_order

_seq_cst

A global total order exists on all mod-
ifications of atomic variables

Y Y Y

memory_order

_consume

Not recommended - - -

Table 3: Available std::memory_order values (C++17). On the Load, Store and RMW
columns, Y means that this memory order can be specified on load, store and RMW

operations, - means that we intentionally ignore this entry.

In conclusion, atomic operations avoid undefined behavior on concurrent accesses to
the same memory location while memory orders help us enforce ordering of operations
accross threads, which can be used to reason about the program.

2.7 MPI�3

MPI stands for message passing interface, which is a message�passing library interface
specification. Design goals of MPI includes high availability across platforms, efficient
communication, thread-safety, reliable and convenient communication interface while
still allowing hardware-specific accelerated mechanisms to be exploited [1].

2.7.1 MPI�3 RMA

RMA in MPI RMA stands for remote memory access. As introduced in the first section
of Section Chapter II, RMA APIs is introduced in MPI-2 and its capabilities are further
extended in MPI-3 to conveniently express irregular applications. In general, RMA is
intended to support applications with dynamically changing data access patterns where
the data distribution is fixed or slowly changing [1]. In such applications, one process,
based on the data it needs, knowing the data distribution, can compute the nodes where
the data is stored. However, because data acess pattern is not known, each process cannot
know whether any other processes will access its data.
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Using the traditional Send/Receive interface, both sides need to issue matching opera-
tions by distributing appropriate transfer parameters. This is not suitable, as previously
explain, only the side that needs to access the data knows all the transfer parameters
while the side that stores the data cannot anticipate this.

2.7.1.1 MPI�RMA communication operations

RMA only requires one side to specify all the transfer parameters and thus only that side
to participate in data communication.

To utilize MPI RMA, each process needs to open a memory window to expose a segment
of its memory to RMA communication operations such as remote writes (MPI_PUT),
remote reads (MPI_GET) or remote accumulates (MPI_ACCUMULATE, MPI_GET_ACCUMULATE,
MPI_FETCH_AND_OP, MPI_COMPARE_AND_SWAP) [1]. These remote communication opera-
tions only requires one side to specify.

2.7.1.2 MPI�RMA synchronization

Besides communication of data from the sender to the receiver, one also needs to
synchronize the sender with the receiver. That is, there must be a mechanism to ensure
the completion of RMA communication calls or that any remote operations have taken
effect. For this purpose, MPI RMA provides active target synchronization and passive
target synchronization. In this document, we’re particularly interested in passive
target synchronization as this mode of synchronization does not require the target
process of an RMA operation to explicitly issue a matching synchronization call with
the origin process, easing the expression of irregular applications [12].

In passive target synchronization, any RMA communication calls must be within a pair
of MPI_Win_lock/MPI_Win_unlock or MPI_Win_lock_all/MPI_Win_unlock_all. After
the unlock call, those RMA communication calls are guaranteed to have taken effect.
One can also force the completion of those RMA communication calls without the need
for the call to unlock using flush calls such as MPI_Win_flush or MPI_Win_flush_local.
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Figure 2: An illustration of passive target communication. Dashed arrows represent
synchronization (source: [1])

2.7.2 MPI�3 SHM

Historically, MPI as a message passing framework is often used in combination with
other shared-memory frameworks such as OpenMP or pthreads to optimize communica-
tion within processes in a node. MPI-3 SHM (shared memory) is a capability introduced
in MPI-3 to optimize intra-node communication within MPI RMA windows. This leads
to the rise of MPI+MPI approach in distributed programming [13]. In MPI-3, shared�
memory windows can be created via MPI_Win_allocate_shared. Shared memory
windows can be used for both one-sided communication and shared memory access.
Besides using MPI-RMA facilities for communication and synchronization in these
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shared�memory windows, other communication and synchronization mechanisms pro-
vided by other shared-memory frameworks such as C++11 atomics can also be used.
Typically, C++11 atomics allows for much more efficient communication and synchro-
nization compared to MPI-RMA. Therefore, MPI-3 SHM can be used as an optimization
for intra-node communication within MPI RMA programs. A general approach in using
shared memory windows with tradition MPI RMA is discussed further in [13].
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Chapter III Approach
In this section, we discuss our general approach in porting shared memory MPSC
algorithms to distributed context using MPI while still preserving their properties of
lock-freedom.

As MPSC is an irregular application, MPI RMA is a necessity tool in our approach.

Our approach is an incremental approach, starting from pure MPI with MPI RMA, which
can be used to easily port many shared memory algorithms, then progressively applying
MPI-3 SHM and C++11 for improved intra-node communication.

3.1 Pure MPI

In pure MPI, we use MPI exclusively for communication and synchronization. With MPI
RMA, the communication calls that we utilize are:

• Remote read: MPI_Get
• Remote write: MPI_Put
• Remote accumulation: MPI_Accumulate, MPI_Get_accumulate, MPI_Fetch_and_op

and MPI_Compare_and_swap.

For lock-free synchronization, we choose to use passive target synchronization with
MPI_Win_lock_all/MPI_Win_unlock_all.

In the MPI-3 specification [1], these functions are specified as follows:

Operation Usage
MPI_Win_lock_all Starts and RMA access epoch to all processes in a memory

window, with a lock type of MPI_LOCK_SHARED. The calling
process can access the window memory on all processes in
the memory window using RMA operations. This routine is

not collective.
MPI_Win_unlock_all Matches with an MPI_Win_lock_all to unlock a window

previously locked by that MPI_Win_lock_all.

Table 4: Specification of MPI_Win_lock_all and MPI_Win_unlock_all

The reason we choose this is 3-fold:
• Unlike active target synchronization, passive target synchronization does not

require the process whose memory is being accessed by an MPI RMA communica-
tion call to participate in. This is in line with our intention to use MPI RMA to easily
model irregular applications like MPSCs.

• Unlike active target synchronization, MPI_Win_lock_all and
MPI_Win_unlock_all do not need to wait for a matching synchronization call in the
target process, and thus, is not delayed by the target process.

• Unlike passive target synchronization with MPI_Win_lock/MPI_Win_unlock, mul-
tiple calls of MPI_Win_lock_all can succeed concurrently, so one process needing
to issue MPI RMA communication calls do not block others.
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An example of our pure MPI approach with MPI_Win_lock_all/MPI_Win_unlock_all,
inspired by [12], is illustrated in the following:

MPI_Win_lock_all(0, win);

MPI_Get(...); // Remote get

MPI_Put(...); // Remote put

MPI_Accumulate(..., MPI_REPLACE, ...); // Atomic put

MPI_Get_accumulate(..., MPI_NO_OP, ...); // Atomic get

MPI_Fetch_and_op(...); // Remote fetch-and-op

MPI_Compare_and_swap(...); // Remote compare and swap

...

MPI_Win_flush(...); // Make previous RMA operations take effects

MPI_Win_flush_local(...); // Make previous RMA operations take

effects locally

...

MPI_Win_unlock_all(win);

Listing 2: An example snippet showcasing our synchronization approach in MPI RMA

Figure 3: An illustration of our synchronization approach in MPI RMA

3.2 MPI+MPI

As discussed in Section Chapter II and [14], [13], a trend is to use MPI both for intra-
node and inter-node communication. MPI-3 has introduced many improvements to MPI
RMA to make this scheme feasible. Compared to pure MPI, MPI+MPI can be more
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efficient because the fact that some processes locating on the same node is exploited to
improve communication.

The general approach is as follows:
1. MPI_Comm_split_type is used with MPI_COMM_TYPE_SHARED to split the communica-

tor to shared-memory communicator.
2. MPI_Win_allocate_shared is called on each shared-memory communicator to obtain

a shared-memory window.
3. Inside these shared-memory window, we can use other communication and synchro-

nization primitives that are optimized for shared-memory context.

3.3 MPI+MPI with C++11

As discussed in the previous section, we can use C++11 atomics and synchronization
facilities inside shared-memory windows. As discussed in [14], this has the potential to
obtain significant speedups compared to pure MPI.

In conclusion, our approach is to use pure MPI by default, MPI+MPI and C++11 are
seen as optimization techniques.
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Chapter IV Literature review
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor inci-
didunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus
animo, cum corpore dolemus, fieri.
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Chapter V Porting
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor inci-
didunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus
animo, cum corpore dolemus, fieri.
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Chapter VI Preliminary results
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor inci-
didunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus
animo, cum corpore dolemus, fieri.
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Chapter VII Conclusion
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor inci-
didunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus
animo, cum corpore dolemus, fieri.
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Chapter VIII Future works
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor inci-
didunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus
animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum
et infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem,
ut postea variari voluptas distinguique possit, augeri amplificarique non possit. At.
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